Chapter – 4: Project management with Example Procedures.

Others

Project management

Software project management is an essential part of software engineering. Projects need to be managed because professional software engineering is always subject to organizational budget and schedule constraints. The project manager‘s job is to ensure that the software project meets and overcomes these constraints as well as delivering high-quality software. Good management cannot guarantee project success. However, bad management usually results in project failure: the software may be delivered late, cost more than originally estimated, or fail to meet the expectations of customers.

The success criteria for project management obviously vary from project to project but, for most projects, important goals are:

  1. Deliver the software to the customer at the agreed time.
  2. Keep overall costs within budget.
  3. Deliver software that meets the customer‘s expectations.
  4. Maintain a happy and well-functioning development team.

These goals are not unique to software engineering but are the goals of all engineering projects. However, software engineering is different from other types of engineering in a number of ways that make software management particularly challenging.

Some of these differences are:

  1. The product is intangible A manager of a shipbuilding or a civil engineering project can see the product being developed. If a schedule slips, the effect on the product is visible—parts of the structure are obviously unfinished.Software is intangible. It cannot be seen or touched. Software project managers cannot see progress by simply looking at the artifact that is being constructed. Rather, they rely on others to produce evidence that they can use to review the progress of the work.
  2. Large software projects are often ‗one-off ‘ projects Large software projects are usually different in some ways from previous projects. Therefore, even managers who have a large body of previous experience may find it difficult to anticipate problems. Furthermore, rapid technological changes in computers and communications can make a manager‘s experience obsolete. Lessons learned from previous projects may not be transferable to new projects.
  3. Software processes are variable and organization-specific The engineering process for some types of system, such as bridges and buildings, is well understood. However, software processes vary quite significantly from one organization to another. Although there has been significant progress in process standardization and improvement, we still cannot reliably predict when a particular software process is likely to lead todevelopment problems. This is especially true when the software project is part of a wider systems engineering project.

It is impossible to write a standard job description for a software project manager. The job varies tremendously depending on the organization and the software product being developed. However, most managers take responsibility at some stage for some or all of the following activities:

  1. Project planning Project managers are responsible for planning, estimating and scheduling project development, and assigning people to tasks. They supervise the work to ensure that it is carried out to the required standards and monitor progress to check that the development is on time and within budget.
  2. Reporting Project managers are usually responsible for reporting on the progress of a project to customers and to the managers of the company developing the software. They have to be able to communicate at a range of levels, from detailed technical information to management summaries. They have to write concise, coherent documents that abstract critical information from detailed project reports. They must be able to present this information during progress reviews.
  3. Risk management Project managers have to assess the risks that may affect a project, monitor these risks, and take action when problems arise.
  4. People management Project managers are responsible for managing a team of people. They have to choose people for their team and establish ways of working that lead to effective team performance.
  5. Proposal writing The first stage in a software project may involve writing a proposal to win a contract to carry out an item of work. The proposal describes the objectives of the project and how it will be carried out. It usually includes cost and schedule estimates and justifies why the project contract should be awarded to a particular organization or team. Proposal writing is a critical task as the survival of many software companies depends on having enough proposals accepted and contracts awarded. There can be no set guidelines for this task; proposal writing is a skill that you acquire through practice and experience.

Risk management

Risk management is one of the most important jobs for a project manager. Risk management involves anticipating risks that might affect the project schedule or the quality of the software being developed, and then taking action to avoid these risks (Hall,

1998; Ould, 1999). You can think of a risk as something that you‘d prefer not to have happen. Risks may threaten the project, the software that is being developed, or the organization. There are, therefore, three related categories of risk:

  1. Project risks Risks that affect the project schedule or resources. An example of a project risk is the loss of an experienced designer. Finding a replacement designer with appropriate skills and experience may take a long time and, consequently, the software design will take longer to complete.
  2. Product risks Risks that affect the quality or performance of the software being developed. An example of a product risk is the failure of a purchased component to perform as expected. This may affect the overall performance of the system so that it is slower than expected.
  3. Business risks Risks that affect the organization developing or procuring the software. For example, a competitor introducing a new product is a business risk. The introduction of a competitive product may mean that the assumptions made about sales of existing software products may be unduly optimistic.
Risk Affects Description
Staff turnover   ProjectExperienced staff will leave the project before it is finished.
Management change   ProjectThere will be a change of organizational management with different priorities.
Hardware unavailability Project Hardware that is essential for the project will not be delivered on schedule.
Requirements change Project and product There will be a larger number of changes to the requirements than anticipated.
Specification delays Project and productSpecifications of essential interfaces are not available on schedule.
Size underestimate Project and product The size of the system has been underestimated.
CASE tool under performance Product CASE tools, which support the project, do not perform as anticipated.
Technology change Product Business The underlying technology on which the system is built is superseded by new technology.
Product  competition BusinessA competitive product is marketed before the system is completed.

Figure 22.1 Examples of common project, product, and business risks

An outline of the process of risk management is illustrated in Figure 22.2. It involves several stages:

  1. Risk identification You should identify possible project, product, and business risks.
  2. Risk analysis You should assess the likelihood and consequences of these risks.
  3. Risk planning You should make plans to address the risk, either by avoiding it or minimizing its effects on the project.
  4. Risk monitoring You should regularly assess the risk and your plans for risk mitigation and revise these when you learn more about the risk. 

You should document the outcomes of the risk management process in a risk management plan. This should include a discussion of the risks faced by the project, an analysis of these risks, and information on how you propose to manage the risk if it seems likely to be a problem. The risk management process is an iterative process that continues throughout the project. Once you have drawn up an initial risk management plan, you monitor the situation to detect emerging risks. 

              Figure 22.2 The risk management process

Software pricing

In principle, the price of a software product to a customer is simply the cost of development plus profit for the developer. In practice, however, the relationship between the project cost and the price quoted to the customer is not usually so simple. When calculating a price, you should take broader organizational, economic, political, and business considerations into account, such as those shown in Figure 23.1.

                   Figure 23.1 Factors affecting software pricing

Project plans

In a plan-driven development project, a project plan sets out the resources available to the project, the work breakdown, and a schedule for carrying out the work. The plan should identify risks to the project and the software under development, and the approach that is taken to risk management. Although the specific details of project plans vary depending on the type of project and organization, plans normally include the following sections:

  1. Introduction This briefly describes the objectives of the project and sets out the constraints (e.g., budget, time, etc.) that affect the management of the project.
  2. Project organization This describes the way in which the development team is organized, the people involved, and their roles in the team.
  3. Risk analysis This describes possible project risks, the likelihood of these risks arising, and the risk reduction strategies that are proposed. 
  4. Hardware and software resource requirements This specifies the hardware and support software required to carry out the development. If hardware has to be bought, estimates of the prices and the delivery schedule may be included.
  5. Work breakdown This sets out the breakdown of the project into activities and identifies the milestones and deliverables associated with each activity. Milestones are key stages in the project where progress can be assessed; deliverables are work products that are delivered to the customer.
  6. Project schedule This shows the dependencies between activities, the estimated time required to reach each milestone, and the allocation of people to activities. 
  7. Monitoring and reporting mechanisms This defines the management reports that should be produced, when these should be produced, and the project monitoring mechanisms to be used.

As well as the principal project plan, which should focus on the risks to the projects and the project schedule, you may develop a number of supplementary plans to support other process activities such as testing and configuration management. Examples of possible supplementary plans are shown in Figure 23.2.

                     Figure 23.2 Project plan supplements

Project scheduling

Project scheduling is the process of deciding how the work in a project will be organized as separate tasks, and when and how these tasks will be executed. You estimate the calendar time needed to complete each task, the effort required, and who will work on the tasks that have been identified. You also have to estimate the resources needed to complete each task, such as the disk space required on a server, the time required on specialized hardware, such as a simulator, and what the travel budget will be. In terms of the planning stages that I discussed in the introduction of this chapter, an initial project schedule is usually created during the project startup phase. This schedule is then refined and modified during development planning.

Schedule representation

Project schedules may simply be represented in a table or spreadsheet showing the tasks, effort, expected duration, and task dependencies (Figure 23.5). However, this style of representation makes it difficult to see the relationships and dependencies between the different activities. For this reason, alternative graphical representations of project schedules have been developed that are often easier to read and understand.

Figure 23.4 The project scheduling  process

There are two types of representation that are commonly used:

  1. Bar charts, which are calendar-based, show who is responsible for each activity, the expected elapsed time, and when the activity is scheduled to begin and end. Bar charts are sometimes called ‗Gantt charts‘, after their inventor, Henry Gantt.
  2. Activity networks, which are network diagrams, show the dependencies between the different activities making up a project. Normally, a project planning tool is used to manage project schedule information. These tools usually expect you to input project information into a table and will then create a database of project information. Bar charts and activity charts can then be generated automatically from this database.

Project activities are the basic planning element. Each activity has:

  1. A duration in calendar days or months.
  2. An effort estimate, which reflects the number of person-days or person-months to complete the work.
  3. A deadline by which the activity should be completed.
  4. A defined endpoint. This represents the tangible result of completing the activity. This could be a document, the holding of a review meeting, the successful execution of all tests, etc.

Figure 23.5 Tasks, durations, and  dependencies

Figure 23.6 Activity bar chart

Problem 1:

  1. Draw the Activity network diagram for the following task. 
    1. Find the critical path and estimated completion time. 
    1. To shorten the project three week which task will be shorten and what will be the estimated project cost? 
ActivityPreceding ActivityNormal TimeCrash TimeNormal CostCrash CostWeeks available for crashingCost for crashing per week
A4210,00011,000  
BA326,0004,000  
CA214,0006,000  
DB5314,00018,000  
EB,C119,0009,000  
FC327,0008,000  
GE,F4213,00025,000  
HD,E4111,00018,000  
IH,G6520,00024,000  

Step 1: 

Step 1:

ActivityPreceding ActivityNormal TimeCrash TimeNormal CostCrash CostWeeks available for crashingCost for crashing per week
A4210,00011,0005002
BA327,0004,0003,0001
CA214,0006,0002,0001
DB5314,00018,0002,0002
EB,C119,0009,00000
FC327,0008,0001,0001
GE,F4213,00025,0006,0002
HD,E4111,00018,0002,3333
IH,G6520,00024,0004,0001

A – B – D – H – I = 22

A – B – E – H – I = 18

A – B – E – G – I = 18

A – C – E – H – I = 17

A – C – E – G – I = 17

A – C – F – G– I = 14

Here the critical path is   , A – B – D – H – I = 22

A – B – D – H – I = 22

A – B – E – H – I = 18

A – B – E – G – I = 18

A – C – E – G – I = 17

  1. – C – F – G– I = 14

1st   Week-Activity A-$500

                          A-3 weeks

                    ABDHI-21weeks

2nd   Week-Activity A-$500

                           A-2 weeks

                        ABDHI-21weeks

3rd   Week- Activity D-$2000

                           D- 4 weeks

                        ABDHI-18 weeks

Project weeks = 10,000 +6,000+4,000+14,000+4,000+7,000+13,000+11,000+20,000

                           =94,000$

New Project weeks = 11,000 +6,000+4,000+16,000+4,000+7,000+13,000+11,000+20,000

                           =97,000$

Problem 2: 

Chapter 4 Relational Algebra

Relational Algebra The part of mathematics in which letters and other general symbols are used to represent numbers and quantities in formula and equations. Ex: (x + y) · z = (x · z) + (y · z). The main application of relational algebra is providing a theoretical...

Chapter 3 Components of the Database System Environment

Components of the Database System Environment There are five major components in the database system environment and their interrelationships are. Hardware Software Data Users Procedures Hardware:  The hardware is the actual computer system used for keeping and...

Chapter 2: Database Languages and their information

Database Languages A DBMS must provide appropriate languages and interfaces for each category of users to express database queries and updates. Database Languages are used to create and maintain database on computer. There are large numbers of database languages like...

Database basic overview

What is DBMS? A Database Management System (DBMS) is a collection of interrelated data and a set of programs to access those data. Database management systems (DBMS) are computer software applications that interact with the user, other applications, and the database...

Laravel – Scopes (3 Easy Steps)

Scoping is one of the superpowers that eloquent grants to developers when querying a model. Scopes allow developers to add constraints to queries for a given model. In simple terms laravel scope is just a query, a query to make the code shorter and faster. We can...

CAMBRIDGE IELTS 17 TEST 3

READING PASSAGE 1: The thylacine Q1. carnivorous keywords: Looked like a dog had series of stripes ate, diet ate an entirely 1 .......................................... diet (2nd paragraph 3rd and 4th line) 1st and 2nd paragraph, 1st  paragraph,resemblance to a...

You may find interest following article

Chapter 4 Relational Algebra

Relational Algebra The part of mathematics in which letters and other general symbols are used to represent numbers and quantities in formula and equations. Ex: (x + y) · z = (x · z) + (y · z). The main application of relational algebra is providing a theoretical foundation for relational databases, particularly query languages for such databases. Relational algebra...

Chapter 3 Components of the Database System Environment

Components of the Database System Environment There are five major components in the database system environment and their interrelationships are. Hardware Software Data Users Procedures Hardware:  The hardware is the actual computer system used for keeping and accessing the database. Conventional DBMS hardware consists of secondary storage devices, usually...

Chapter 2: Database Languages and their information

Database Languages A DBMS must provide appropriate languages and interfaces for each category of users to express database queries and updates. Database Languages are used to create and maintain database on computer. There are large numbers of database languages like Oracle, MySQL, MS Access, dBase, FoxPro etc. Database Languages: Refers to the languages used to...

Database basic overview

What is DBMS? A Database Management System (DBMS) is a collection of interrelated data and a set of programs to access those data. Database management systems (DBMS) are computer software applications that interact with the user, other applications, and the database itself to capture and analyze data. Purpose of Database Systems The collection of data, usually...

Laravel – Scopes (3 Easy Steps)

Scoping is one of the superpowers that eloquent grants to developers when querying a model. Scopes allow developers to add constraints to queries for a given model. In simple terms laravel scope is just a query, a query to make the code shorter and faster. We can create custom query with relation or anything with scopes. In any admin project we need to get data...

CAMBRIDGE IELTS 17 TEST 3

READING PASSAGE 1: The thylacine Q1. carnivorous keywords: Looked like a dog had series of stripes ate, diet ate an entirely 1 .......................................... diet (2nd paragraph 3rd and 4th line) 1st and 2nd paragraph, 1st  paragraph,resemblance to a dog. … dark brown stripes over its back, beginning at the rear of the body and extending onto the...

CAMBRIDGE IELTS 17 TEST 4

PASSAGE 1 Q1 (False) (Many Madagascan forests are being destroyed by attacks from insects.) Madagascar's forests are being converted to agricultural land at a rate of one percent every year. Much of this destruction is fuelled by the cultivation of the country's main staple crop: rice. And a key reason for this destruction is that insect pests are destroying vast...

Cambridge IELTS 16 Test 4

Here we will discuss pros and cons of all the questions of the passage with step by step Solution included Tips and Strategies. Reading Passage 1 –Roman Tunnels IELTS Cambridge 16, Test 4, Academic Reading Module, Reading Passage 1 Questions 1-6. Label the diagrams below. The Persian Qanat Method 1. ………………………. to direct the tunnelingAnswer: posts – First...

Cambridge IELTS 16 Test 3

Reading Passage 1: Roman Shipbuilding and Navigation, Solution with Answer Key , Reading Passage 1: Roman Shipbuilding and Navigation IELTS Cambridge 16, Test 3, Academic Reading Module Cambridge IELTS 16, Test 3: Reading Passage 1 – Roman Shipbuilding and Navigation with Answer Key. Here we will discuss pros and cons of all the questions of the...

Cambridge IELTS 16 Test 2

Reading Passage 1: The White Horse of Uffington, Solution with Answer Key The White Horse of Uffington IELTS Cambridge 16, Test 2, Academic Reading Module, Reading Passage 1 Cambridge IELTS 16, Test 2: Reading Passage 1 – The White Horse of Uffington  with Answer Key. Here we will discuss pros and cons of all the questions of the passage with...

Cambridge IELTS 16 Test 1

Cambridge IELTS 16, Test 1, Reading Passage 1: Why We Need to Protect Bolar Bears, Solution with Answer Key Cambridge IELTS 16, Test 1: Reading Passage 1 – Why We Need to Protect Bolar Bears with Answer Key. Here we will discuss pros and cons of all the questions of the passage with step by step...

Cambridge IELTS 15 Reading Test 4 Answers

PASSAGE 1: THE RETURN OF THE HUARANGO QUESTIONS 1-5: COMPLETE THE NOTES BELOW. 1. Answer: water Key words:  access, deep, surface Paragraph 2 provides information on the role of the huarango tree: “it could reach deep water sources”. So the answer is ‘water’. access = reach Answer: water. 2. Answer: diet Key words: crucial,...

Cambridge IELTS 15 Reading Test 3 Answers

PASSAGE 1: HENRY MOORE (1898 – 1986 ) QUESTIONS 1-7: DO THE FOLLOWING STATEMENTS AGREE WITH THE INFORMATION GIVEN IN READING PASSAGE 1? 1. Answer: TRUE Key words: leaving school, Moore, did, father, wanted It is mentioned in the first paragraph that “After leaving school, Moore hoped to become a sculptor, but instead he complied with his father’s...

Cambridge IELTS 15 Reading Test 2 Answers 

PASSAGE 1: COULD URBAN ENGINEERS LEARN FROM DANCE ?  QUESTIONS 1- 6: READING PASSAGE 1 HAS SEVEN PARAGRAPHS, A-G. 1. Answer: B Key words: way of using dance, not proposing By using the skimming and scanning technique, we would find that before going into details about how engineers can learn from dance, the author first briefly mentions ways of...

Cambridge IELTS 15 Reading Test 1 Answers

PASSAGE 1: NUTMEG – A VALUABLE SPICE QUESTIONS 1- 4: COMPLETE THE NOTES BELOW.CHOOSE ONE WORD ONLY FROM THE PASSAGE FOR EACH ANSWER.WRITE YOUR ANSWER IN BOXES 1-8 ON YOUR ANSWER SHEET. 1. Answer: oval Key words: leaves, shape Using the scanning skill, we can see that the first paragraph describes the characteristics of the tree in detail, including...

CAMBRIDGE IELTS 14 READING TEST 4 ANSWERS 

PASSAGE 1: THE SECRET OF STAYING YOUNG QUESTIONS 1-8: COMPLETE THE NOTES BELOW. 1. ANSWER: FOUR / 4 Explain– Key words: focused age groups, ants– In paragraph 3, it is stated that “Giraldo focused on ants at four age ranges”,so the answer must be “four/4”. 2. ANSWER: YOUNG Explain– Key words: how well, ants, looked after– The first sentence of...

CAMBRIDGE IELTS 14 READING TEST 3 ANSWERS

PASSAGE 1: THE CONCEPT OF INTELLIGENCE QUESTIONS 1-3: READING PASSAGE 1 HAS SIX PARAGRAPHS, A-F. 1. ANSWER: B Explain ·     Key words: non-scientists, assumptions, intelligence, influence, behavior ·    People‟s behavior towards others‟ intelligence is mentioned in the first sentence of paragraph B: “implicit theories of...

CAMBRIDGE IELTS 14 READING TEST 2 ANSWERS

Cambridge IELTS 14 is the latest IELTS exam preparation.https://draftsbook.com/ will help you to answer all questions in cambridge ielts 14 reading test 2 with detail explanations. PASSAGE 1: ALEXANDER HENDERSON (1831-1913) QUESTIONS 1-8: DO THE FOLLOWING STATEMENTS AGREE WITH THE INFORMATION GIVEN IN READING PASSAGE 1? 1. ANSWER: FALSE Explain Henderson rarely...

Cambridge IELTS 14 Reading Test 1 Answers

Cambridge IELTS 14 is the latest IELTS exam preparation.https://draftsbook.com/ will help you to answer all questions in cambridge ielts 14 reading test 1 with detail explanations. PASSAGE 1: THE IMPORTANCE OF CHILDREN’S PLAY QUESTIONS 1-8: COMPLETE THE NOTES BELOW. 1. ANSWER: CREATIVITY Explain building a “magical kingdom” may help develop … – Key words: magical...

Cambridge IELTS 13 Reading Test 4 Answers 

PASSAGE 1: CUTTY SARK: THE FASTEST SAILING SHIP OF ALL TIME QUESTIONS 1-8: DO THE FOLLOWING STATEMENTS AGREE WITH THE INFORMATION GIVEN IN READING PASSAGE 1? 1. CLIPPERS WERE ORIGINALLY INTENDED TO BE USED AS PASSENGER SHIPS Key words: clippers, originally, passengerAt the beginning of paragraph 2, we find the statement: “The fastest commercial sailing...