Chapter 1: Introduction To Digital Image Processing (DIP)

Digital Image Processing | 0 comments

Introduction to DIP

Signal processing is a discipline in electrical engineering and in mathematics that deals with analysis and processing of analog and digital signals , and deals with storing , filtering , and other operations on signals. These signals include transmission signals , sound or voice signals , image signals , and other signals etc.
Out of all these signals , the field that deals with the type of signals for which the input is an image and the output is also an image is done in image processing. As it name suggests, it deals with the processing on images.
It can be further divided into analog image processing and digital image processing.

Analog image processing

Analog image processing is done on analog signals. It includes processing on two dimensional analog signals. In this type of processing, the images are manipulated by electrical means by varying the electrical signal. The common example include is the television image.
Digital image processing has dominated over analog image processing with the passage of time due its wider range of applications.

Digital image processing

The digital image processing deals with developing a digital system that performs operations on an digital image.

What is an Image

An image is nothing more than a two dimensional signal. It is defined by the mathematical function f(x,y) where x and y are the two co-ordinates horizontally and vertically.
The value of f(x,y) at any point is gives the pixel value at that point of an image.

The above figure is an example of digital image that you are now viewing on your computer screen. But actually , this image is nothing but a two dimensional array of numbers ranging between 0 and 255.
128 30 123
232 123 321
123 77 89
80 255 255

Each number represents the value of the function f(x,y) at any point. In this case the value 128 ,
230 ,123 each represents an individual pixel value. The dimensions of the picture is actually the dimensions of this two dimensional array.

Relationship between a digital image and a signal

If the image is a two dimensional array then what does it have to do with a signal? In order to understand that , We need to first understand what is a signal?

Signal

In physical world, any quantity measurable through time over space or any higher dimension can be taken as a signal. A signal is a mathematical function, and it conveys some information.
A signal can be one dimensional or two dimensional or higher dimensional signal. One dimensional signal is a signal that is measured over time. The common example is a voice signal.
The two dimensional signals are those that are measured over some other physical quantities.
The example of two dimensional signal is a digital image. We will look in more detail in the
next tutorial of how a one dimensional or two dimensional signals and higher signals are formed and interpreted.

Relationship

Since anything that conveys information or broadcast a message in physical world between two observers is a signal. That includes speech or human voice human voice or an image as a signal. Since when we speak , our voice is converted to a sound wave/signal and transformed with respect to the time to person we are speaking to. Not only this , but the way a digital camera works, as while acquiring an image from a digital camera involves transfer of a signal from one part of the system to the other.

How a digital image is formed

Since capturing an image from a camera is a physical process. The sunlight is used as a source of energy. A sensor array is used for the acquisition of the image. So when the sunlight falls upon the object, then the amount of light reflected by that object is sensed by the sensors, and a continuous voltage signal is generated by the amount of sensed data. In order to create a digital image , we need to convert this data into a digital form. This involves sampling and quantization. The result of sampling and quantization results in an two dimensional array or matrix of numbers which are nothing but a digital image.

Overlapping fields

Machine/Computer vision

Machine vision or computer vision deals with developing a system in which the input is an image and the output is some information. For example: Developing a system that scans human face and opens any kind of lock. This system would look something like this.

Computer graphics

Computer graphics deals with the formation of images from object models, rather then the image is captured by some device. For example: Object rendering. Generating an image from an object model. Such a system would look something like this.

Artificial intelligence

Artificial intelligence is more or less the study of putting human intelligence into machines. Artificial intelligence has many applications in image processing. For example: developing computer aided diagnosis systems that help doctors in interpreting images of X-ray , MRI etc and then highlighting conspicuous section to be examined by the doctor.

Signals

In electrical engineering, the fundamental quantity of representing some information is called a signal. It does not matter what the information is i-e: Analog or digital information. In mathematics, a signal is a function that conveys some information. In fact any quantity measurable through time over space or any higher dimension can be taken as a signal. A signal could be of any dimension and could be of any form.

Analog signals

A signal could be an analog quantity that means it is defined with respect to the time. It is a continuous signal. These signals are defined over continuous independent variables. They are difficult to analyze, as they carry a huge number of values. They are very much accurate due to a large sample of values. In order to store these signals , you require an infinite memory because it can achieve infinite values on a real line. Analog signals are denoted by sin waves.

For example: Human voice

Human voice is an example of analog signals. When you speak, the voice that is produced travel through air in the form of pressure waves and thus belongs to a mathematical function, having independent variables of space and time and a value corresponding to air pressure. Another example is of sin wave which is shown in the figure below. Y = sinx where x is independent

sinx

Digital signals

As compared to analog signals, digital signals are very easy to analyze. They are discontinuous signals. They are the appropriation of analog signals.
The word digital stands for discrete values and hence it means that they use specific values to represent any information. In digital signal, only two values are used to represent something i-e: 1 and 0 binary values. Digital signals are less accurate then analog signals because they are the discrete samples of an analog signal taken over some period of time. However digital signals are not subject to noise. So they last long and are easy to interpret. Digital signals are denoted by square waves.

For example: Computer keyboard

Whenever a key is pressed from the keyboard, the appropriate electrical signal is sent to keyboard controller containing the ASCII value that particular key. For example the electrical signal that is generated when keyboard key a is pressed, carry information of digit 97 in the form of 0 and 1, which is the ASCII value of character a.

Difference between analog and digital signals

Comparison element Analog signal Digital signal
Analysis Difficult Possible to analyze
Representation Continuous Discontinuous
Accuracy More accurate Less accurate
Storage Infinite memory Easily stored
Subject to Noise Yes No
Recording Technique Original signal is preserved Samples of the signal are taken and preserved

Examples Human voice, Thermometer, Analog phones e.t.c Computers, Digital Phones, Digital pens, etc.

Systems

A system is a defined by the type of input and output it deals with. Since we are dealing with signals, so in our case, our system would be a mathematical model, a piece of code/software, or a physical device, or a black box whose input is a signal and it performs some processing on that signal, and the output is a signal. The input is known as excitation and the output is known as response.

system

In the above figure a system has been shown whose input and output both are signals but the input is an analog signal. And the output is an digital signal. It means our system is actually a conversion system that converts analog signals to digital signals.

Why do we need to convert an analog signal to digital signal.

The first and obvious reason is that digital image processing deals with digital images, that are digital signals. So when ever the image is captured, it is converted into digital format and then it is processed.
The second and important reason is, that in order to perform operations on an analog signal with a digital computer, you have to store that analog signal in the computer. And in order to store an analog signal, infinite memory is required to store it. And since thats not possible, so thats why we convert that signal into digital format and then store it in digital computer and then performs operations on it.

Continuous systems vs discrete systems Continuous systems

The type of systems whose input and output both are continuous signals or analog signals are called continuous systems.

system

Discrete systems

The type of systems whose input and output both are discrete signals or digital signals are called digital systems.

discrete

Applications of Digital Image Processing

Some of the major fields in which digital image processing is widely used are mentioned below
• Image sharpening and restoration
• Medical field
• Remote sensing
• Transmission and encoding
• Machine/Robot vision
• Color processing
• Pattern recognition
• Video processing
• Microscopic Imaging

Frequency Word for IELTS Listening

Frequency Word for IELTS Listening School a. Library  WordSentence1. Shelf 2. Librarian 3. The stacks 4. Return 5. Fine 6. Magazine 7. Copier  8. Overdue  9. Reading room  10. Reference...

Chapter 5: System request on SDLC

System Request In most organizations, project initiation begins by preparing a  system request. A  system request is a document that describes the business reasons for building a system and the value that the system is expected to provide.The project sponsor...

Chapter 4: SDLC design Phase

SDLC design Phase DFD (Design Analysis)Architectural DesignUI DesignDatabase DesignProgram DesignArchitectural design (logical)Network designClient –server designClient designServer designCloud ComputingDatabase designER diagramRelational diagramDDL (not...

You may find interest following article

Frequency Word for IELTS Listening

Frequency Word for IELTS Listening School a. Library  WordSentence1. Shelf 2. Librarian 3. The stacks 4. Return 5. Fine 6. Magazine 7. Copier  8. Overdue  9. Reading room  10. Reference room  11. Periodical room  12. Study lounge  13. Catalogue  14....

Chapter 8: Gantt chart Project Development in SDLC

Gantt chart Project DevelopmentSchedule (project management) The project scheduleis the tool that communicates what work needs to be performed, which resources of the organization will perform the work and the timeframes in which that work needs to be performed. The project scheduleshould reflect all of the work associated with delivering the project on time....

Chapter 7: Feasibility Analysis in Software Develoment Life Cycle.

Feasibility AnalysisWhat is Feasibility Analysis?? An analysisand evaluation of a proposed project to determine if it (1) is technically feasible, (2) is feasible within the estimated cost, and (3) will be profitable for Organization. Feasibility analysis guides the organization in determining whether to proceed with the project. Feasibility analysis also identifies...

Chapter 6: Data Flow Diagram in Software Development Life Cycle.

Data Flow Diagram What is DFD? A data flow diagram (DFD) is a graphical representation of the "flow" of data through an information system, modelling its process aspects.A DFD is often used as a preliminary step to create an overview of the system, which can later be elaborated.Show users how data moves between different processes in a system. Figure 1: DFD Symbols...

Chapter 5: System request on SDLC

System Request In most organizations, project initiation begins by preparing a  system request. A  system request is a document that describes the business reasons for building a system and the value that the system is expected to provide.The project sponsor usually completes this form as part of a formal system project selection process within the...

Chapter 4: SDLC design Phase

SDLC design Phase DFD (Design Analysis)Architectural DesignUI DesignDatabase DesignProgram DesignArchitectural design (logical)Network designClient –server designClient designServer designCloud ComputingDatabase designER diagramRelational diagramDDL (not now..!!)Program design (physical)Investigating the hardware/software platformPhysical DFDData storageData...

Chapter 3: SDLC and its Life cycle Phases.

What is SDLC? The systems development life cycle (SDLC), also referred to as the application development life-cycle, is a term used in systems engineering, information systems and software engineering to describe a process for planning, creating, testing, and deploying an information system. Career Paths for System Developers Systems Development Life Cycle Building...

Chapter 2: SDLC Key Features For SYSTEMS ANALYST.

Once upon a time, software development consisted of a programmer writing code to solve a problem or automate a procedure. Nowadays, systems are so big and complex that teams of architects, analysts, programmers, testers and users must work together to create the millions of lines of custom-written code that drive our enterprises.To manage this, a number of system...

Chapter 1: System analysis and Design Overview.

System analysis, a method of studying a system by examining its component parts and their interactions. •It provides a framework in which judgments of the experts in different fields can be combined to determine what must be done, and what is the best way to accomplish it in light of current and future needs.  •The system analyst (usually a software engineer or...

Chapter 4: Concept Of Sampling, Quantization And Resolutions

Concept Of Sampling, Quantization And Resolutions Conversion of analog signal to digital signal: The output of most of the image sensors is an analog signal, and we can not apply digital processing on it because we can not store it. We can not store it because it requires infinite memory to store a signal that can have infinite values. So we have to convert an...

Chapter 3: Images and Conversions in Digital Image Process

Images And Conversions There are many type of images, and we will look in detail about different types of images, and the color distribution in them. The binary image The binary image as it name states, contain only two pixel values. 0 and 1. In our previous tutorial of bits per pixel, we have explained this in detail about the representation of pixel values to...

Chapter 2: Concept of Pixel in Digital Image Process

Concept of Pixel Pixel Pixel is the smallest element of an image. Each pixel correspond to any one value. In an 8-bit gray scale image, the value of the pixel between 0 and 255. The value of a pixel at any point correspond to the intensity of the light photons striking at that point. Each pixel store a value proportional to the light intensity at that particular...

Part 6: IELTS Academic Writing Task 1 For Diagram/Graph Vocabulary

Vocabulary to show the sequence: You must write a summary of at least 150 words in response to a specific graph (bar, line, or pie graph), table, chart, or procedure in Writing Task 1 of the IELTS Academic test (how something works, how something is done). This job assesses your ability to choose and report the most important aspects, describe and compare data,...

Part 5: IELTS Academic Writing Task 1 Formal and Informal expressions.

Formal and Informal expressions and words: You must write a summary of at least 150 words in response to a specific graph (bar, line, or pie graph), table, chart, or procedure on the IELTS Academic test (how something works, how something is done). Few more informal expressions with their formal versions are given below. Since IELTS is a formal test, your writing...

Part 4: IELTS Academic Writing Task 1 For Graph Comparison Vocabulary

Vocabulary to represent comparison in graphs: Type Word(s) should be used Similar about / almost / nearly / roughly / approximately / around / just about / very nearly / Just over just above / just over / just bigger / just beyond / just across Just short just below / just beneath / just sort / just under / just a little Much more well above / well above / well...

Part 3: IELTS Academic Writing Task 1 For Vocabulary Date month etc.

IELTS Academic Writing Task 1 For Vocabulary Date month From 1990 to 2000, Commencing from 1980, Between 1995 and 2005, After 2012. By 1995, In 1998, In February, Over the period, During the period, During 2011. In the first half of the year, For the first quarter, The last quarter of the year, During the first decade. In the 80s, In the 1980s, During the next 6...

Part 2: IELTS Academic Writing Task 1 For Report Writing

The structure of the IELTS Academic Writing Task 1 (Report Writing): Introduction: Introduction (never copy word for word from the question) + Overview/ General trend (what the diagrams indicate at a first glance). Reporting Details: Main features in the Details + Comparison and Contrast of the data. (Do not give all the figures.) + Most striking features of the...

Part 1: IELTS Writing Task 1 For Vocabulary

Vocabulary For Academic IELTS Writing Task 1 (part 1)  Academic IELTS Writing Task 1 question requires you to use several vocabularies to present the data given in a pie/ bar/ line/ mixed graph or to describe a process or a flow chart. Being able to use appropriate vocabularies, presenting the main trend, comparing & contrasting data and presenting thei logical...

Part 10: DC – Network Addressing and Network Layer Routing

DC - Network Addressing Layer 3 network addressing is one of the major tasks of Network Layer. Network Addresses are always logical i.e. these are software based addresses which can be changed by appropriate configurations. A network address always points to host / node / server or it can represent a whole network. Network address is always configured on network...

Part 9: Error Detection and Correction in Communication

DC - Error Detection & Correction There are many reasons such as noise, cross-talk etc., which may help data to get corrupted during transmission. The upper layers work on some generalized view of network architecture and are not aware of actual hardware data processing. Hence, the upper layers expect error-free transmission between the systems. Most of the...